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Abstract. Introducing definitions of solid spheroidal harmonics which contain those of solid
spherical harmonics as special cases for vanishing ellipticity it is shown that the formalism of the
multipole expansion of a 1/R-potential can be consistently extended to incorporate prolate and
oblate spheroidal multipole moments. For finite ellipticity one can transform between regular solid
spheroidal and spherical harmonics and multipole moments through simple relations given before
and independently proven here. Corresponding relations between irregular solid spheroidal and
spherical harmonics are presented for the first time, together with an investigation of the convergence
properties of the resulting series expansions. Explicit formulae are derived for the transformations
between spheroidal multipoles calculated in coordinate systems of different ellipticity, origin and
orientation. These fromulae can be utilized to calculate the energy of interaction between two
arbitrarily oriented spheroidal charge or mass distributions of different ellipticity. The performance
of spheroidal multipole expansions is illustrated with some numerical examples.

1. Introduction

One of the most useful series expansions in physics is certainly that of the inverse of a distance
between two points in space into a Taylor series around one of the points, or, more elegantly,
into products of corresponding regular and irregular solid spherical harmonics. For example,
if all of the members of a set of particles interact with a separate single particle via an inverse
distance energy law, as is the case for electrostatic or gravitational interactions, this series
expansion can be used to express the energy of interaction in powers of the inverse distance
between the single particle and an appropriate point within the particle distribution, resulting
in the multipole expansion of the potential of the charge distribution. Similarly, the energy of
interaction between two separate sets of particles can be expanded in powers of the inverse
distance between chosen centres of the two charge distributions. Using the multipole expansion
for the calculation of potentials or interaction energies one can replace the detailed knowledge of
the individual positions of the particles within the distributions by a set of multipole moments.
This is particularly useful when considering continuous charge or mass distributions. The
multipole moments are computed once and for all, and it is often the case that either only a
finite number of them do not vanish or that higher multipole moments can be safely neglected.

The multipole expansion of an interaction energy will converge to the exact result when
each of the separate charge or mass distributions can be enclosed in a sphere and the respective
spheres do not overlap or touch. This does preclude its application to problems such as
that of computing the electrostatic interaction between, for example, a long rod-like and a
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spherical charge distribution, when the latter is located on a place at the side of the former
which is closer than half of the rod length. Similarly, the conventional multipole expansion in
general will not converge when the spherical charge distribution is placed on top of a disc-like
charge distribution at a distance smaller than the radius of the disc. Problems of this type are
frequently encountered in the theory of intermolecular interactions [1], for example when one
wants to study the interaction of a water molecule with an extended polymer chain or with a
flat polycyclic aromatic system. These situations can be more appropriately described when
using prolate or oblate spheroidal instead of spherical coordinates. It is well known that in
these coordinates one can give a series expansion of the inverse of a distance between two
points in a similar way as in the case of spherical coordinates, replacing spherical with prolate
or oblate spheroidal harmonics [2, 3]. Some time ago Stiles and Buchdahl [4–6] derived
formulae which relate regular solid spherical harmonics to their spheroidal counterparts,
showing explicitly how the latter can be obtained as linear combinations of the former and
vice versa. Unfortunately, these results and related work on the ellipsoidal case [7,8] seem to
have gone largely unnoticed—perhaps due to the complications connected with the occurence
of associated Legendre functions of the second kind in the spheroidal series expansion. Yet,
for numerical calculations this plays hardly any role, and the development of a systematic
formalism dealing with spheroidal multipoles appears to be worthwhile, mainly, but not
exclusively, with applications in the theory of intermolecular interactions in mind.

Some basic ingredients of such a theory of spheroidal multipole expansions will be
presented in this paper. First of all, since spherical coordinates can be obtained as a special
case of the spheroidal coordinates for vanishing ellipticity, it is desirable that regular and
irregular solid spherical harmonics can be obtained as special cases of corresponding spheroidal
harmonics as well. Such a consistent definition of regular and irregular solid prolate spheroidal
harmonics is given in section 2, which also contains the formulae for transformation between
the regular harmonics (a new proof of which is given in appendix B) and, for the first time, the
formulae for transformation between the irregular harmonics. The latter have the form of an
infinite series expansion whose convergence properties will be briefly investigated, elucidating
some advantages of an expansion into spheroidal multipole potentials. An important feature of
the theory of spherical harmonics is the availability of formulae for their transformations under
translation and rotation of the coordinate system, making it easy to shift or rotate spherical
multipoles. These transformations are of particular value in those cases where the charge
or mass distribution deviates from an idealized spherical shape, so that one may wish to
‘readjust’ a known set of multipoles to a rotated or displaced coordinate system. Furthermore,
they play a crucial role in the derivation of formulae for the interaction between arbitrarily
oriented multipoles [1]. For prolate spheroidal multipole moments there is an additional
transformation to be considered, namely that due to a readjustment of the distance between
the confocal points of the spheroid. The corresponding transformation formulae for scaling,
translation, and rotation of regular solid prolate spheroidal harmonics can easily be derived
from their relation to the spherical harmonics. Explicit formulae which apply directly to prolate
spheroidal multipole moments are given in section 3, along with some basic properties of the
transformation coefficients. The definition of regular and irregular solid oblate spheroidal
harmonics and the modifications of the transformation relations necessary to handle oblate
spheroidal multipole moments are presented in section 4. In the concluding section 5 it is
indicated how these relations can be exploited to determine the energy of interaction between
arbitrarily oriented or scaled spheroidal multipole moments and some numerical comparisons
of the performance of spheroidal and spherical multipole expansions will be shown.
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2. Prolate spheroidal multipole expansion

2.1. Regular and irregular solid spherical harmonics

The Laplace expansion of the inverse distance between two pointsr andR in a three-
dimensional real space

1

|r −R| =
∞∑
l=0

rl

Rl+1
Pl(s)Pl(S) + 2

∞∑
l=1

l∑
m=1

(l −m)!
(l +m)!

rl

Rl+1
Pml (s)P

m
l (S) cosm(ϕ − φ) (1)

where(r, s, ϕ) and(R, S, φ) are the spherical coordinates (cf appendix A (i)) of the points
r andR, respectively, is one of the most frequently used series expansions in physics. It
converges absolutely forR > r. Introducing regular and irregular solid spherical harmonics
defined through the Racah spherical harmonicsClm(s, ϕ) as [1,9,10]

Rslm(r) = rlClm(s, ϕ) = rl
√
(l −m)!
(l +m)!

Pml (s)e
imϕ (2)

I slm(R) = R−l−1Clm(S, φ) = R−l−1

√
(l −m)!
(l +m)!

Pml (S)e
imφ (3)

respectively, the Laplace expansion can conveniently be rewritten in the form

1

|r −R| =
∞∑
l=0

l∑
m=−l

I s∗lm(R)R
s
lm(r). (4)

The numerical factors in the definitions (2), (3) are chosen such thatRsl(−m) = (−1)mRs∗lm
andI sl(−m) = (−1)mI s∗lm. Employing, for simplicity, atomic units(e = 1 = 4πε0) the electric
potential8(R) = ∫V dτρ(r)/|r−R| generated by a charge distribution can now be calculated
from the spherical multipole expansion

8(R) =
∞∑
l=0

l∑
m=−l

I s∗lm(R)
∫
V

dτRslm(r)ρ(r)

=
∞∑
l=0

l∑
m=−l

I s∗lm(R)Q
s
lm (5)

where the integration has to be carried out over the volumeV occupied by the charge distribution
andR must be outside the smallest sphere enclosingV. Equation (5) contains the definition
of the spherical multipole momentsQs

lm.

2.2. Regular and irregular solid prolate spheroidal harmonics

Using prolate spheroidal coordinates(t, u, ϕ) and(T , U, φ) to describe the pointsr andR (cf
appendix A (i)) one obtains the Neumann expansion

1

|r −R| =
∞∑
l=0

2l + 1

c
Pl(t)Ql(T )Pl(u)Pl(U) + 2

∞∑
l=1

l∑
m=1

2l + 1

c
(−1)m

(
(l −m)!
(l +m)!

)2

×Pml (t)Qml (T )Pml (u)Pml (U) cosm(ϕ − φ). (6)

It converges absolutely forT > t (cf [3], volume I, p 90 ff). Introducing the definitions

R
p

lm(r; c) = cl
(l −m)!
(2l − 1)!!

√
(l −m)!
(l +m)!

Pml (t)Pml (u)eimϕ (7)



1378 G Jansen

I
p

lm(R; c) = c−l−1(−1)m
(2l + 1)!!

(l +m)!

√
(l −m)!
(l +m)!

Qml (T )Pml (U)eimφ (8)

for regular and irregular solid prolate spheroidal harmonics, equation (6) can be recast into the
simple form

1

|r −R| =
∞∑
l=0

l∑
m=−l

I
p∗
lm (R; c)Rplm(r; c). (9)

The definitions (7), (8) imply thatc−lRplm(r; c) = Rplm(r/c; 1)andcl+1I
p

lm(r; c) = Iplm(r/c; 1).
As for the spherical harmonics, the spheroidal harmonics are of parity(−1)l , Rplm(−r; c) =
(−1)lRplm(r; c) andIplm(−r; c) = (−1)lI plm(r; c). The numerical factors in definitions (7), (8)
are chosen such thatRpl(−m) = (−1)mRp∗lm andIpl(−m) = (−1)mIp∗lm . Furthermore, as it will be
seen in sections 2.3 and 2.4, they ensure that

lim
c→0

R
p

lm(r; c) = Rslm(r) (10)

lim
c→0

I
p

lm(R; c) = I slm(R). (11)

Using this the electric potential generated by a charge distribution can now alternatively be
calculated from the prolate spheroidal multipole expansion

8(R) =
∞∑
l=0

l∑
m=−l

I
p∗
lm (R; c)

∫
V

dτRplm(r; c)ρ(r)

=
∞∑
l=0

l∑
m=−l

I
p∗
lm (R; c)Qp

lm(c) (12)

whereRmust be outside the smallest prolate spheroid enclosing the volumeV occupied by the
charge distribution. Equation (12) defines the prolate spheroidal multipole momentsQ

p

lm(c).
The transformation and limiting formulae for the regular solid prolate spheroidal harmonics
derived in the following sections apply immediately to the corresponding multipole moments
as well.

2.3. Relation to regular solid spherical harmonics

The spherical harmonicrlPml (s) contains products and powers ofr2 = c2(t2 − u2 − 1),
rs = ctu, andrm(1− s2)m/2 = c(t2 − 1)m/2(1− u2)m/2. Therefore, it is clear that it can
be expanded in products of associated Legendre functionsPmi (t)Pmj (u), with i andj ranging
down froml to |m| or |m|+ 1 in steps of two. As it turns out (cf appendix B.1) only terms with
j = i occur in the expansion:( r

c

)l
P ml (s) =

l∑
i=|m|

alimPmi (t)Pmi (u). (13)

An explicit form for the expansion coefficients has first been given by Stiles and Buchdahl [5,6].
It can be written as

alim =
(2i + 1)(l +m)!

(l − i)!!(l + i + 1)!!

(i −m)!
(i +m)!

1li
m (14)

where, for convenience, the range of definition has been extended to arbitrary combinations
of l, i andm using

1li
m =

{
1 (l − i) even, l > i > |m|
0 else.

(15)
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Appendix B.1 presents an elementary proof. Considering the inverse relation to equation (13)
it is clear that one can expand

Pml (t)Pml (u) =
l∑

i=|m|
ãlim

( r
c

)i
P mi (s). (16)

The explicit form of the expansion coefficients now reads [5,6]:

ãlim =
(−1)(l−i)/2(l + i − 1)!!

(l − i)!!(i +m)!

(l +m)!

(l −m)!1
li
m. (17)

Equations (16), (17) can be shown by inserting equations (13), (14) into (16) and using the
sum rule

l∑
i=k

ãlima
ik
m = δlk (18)

derived in appendix B.2. It is clear then that
l∑
i=k

alimã
ik
m = δlk (19)

must also hold.
Combining the definitions (2) and (7) with the above relations one obtains the formulae

for the transformation between regular solid spherical harmonics and their prolate spheroidal
counterparts:

Rslm(r) =
l∑

i=|m|
cl−i [s : p]limR

p

im(r; c) (20)

R
p

lm(r; c) =
l∑

i=|m|
cl−i [p : s]limR

s
im(r) (21)

with

[s : p]lim = [s : p]li−m =
√
(l +m)!(l −m)!
(i +m)!(i −m)!

(2i + 1)!!

(l − i)!!(l + i + 1)!!
1li
m (22)

[p : s]lim = [p : s]li−m =
√
(l +m)!(l −m)!
(i +m)!(i −m)!

(−1)(l−i)/2(l + i − 1)!!

(l − i)!!(2l − 1)!!
1li
m (23)

and
l∑
i=k

[p : s]lim[s : p]ikm =
l∑
i=k

[s : p]lim[p : s]ikm = δlk. (24)

Noting that [s : p]iim = [p : s]iim = 1, one obtains (10) immediately from (21). It is easy
to calculate the transformation coefficients numerically by employing the simple forward
recursions

[s : p](l+2)i
m =

√
((l + 2)2 −m2)((l + 1)2 −m2)

(l + 2− i)(l + i + 3)
[s : p]lim (25)

[p : s](l+2)i
m = − (l + i + 1)

√
((l + 2)2 −m2)((l + 1)2 −m2)

(l + 2− i)(2l + 3)(2l + 1)
[p : s]lim (26)

or similar backward recursions for [s : p]l(i−2)
m and [s : p]l(i−2)

m . Figure 1 shows some of the
low-rank transformation coefficients, which, for largel, decrease inversely proportional tol in
case of the [s : p]lim and exponentially in case of the [p : s]lim.
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Figure 1. Some coefficients for transformation from solid prolate spheroidal to spherical harmonics,
[s : p]lim (a), and the absolute values of the back-transformation coefficients,|[p : s]lim| (b), as a
function ofl.

2.4. Relation to irregular solid spherical harmonics

Let us assume thatr < R andt < T for the pointsr andR. Inserting (16) into the Neumann
expansion (6), comparing it with the Laplace expansion (1), and making use of the orthogonality
of cosm(ϕ − φ) andPmi (s) shows( c

R

)l+1
Pml (S) =

∞∑
i=l
Qmi (T )Pmi (U)bilm (27)

where

bilm =
(−1)(i−l+2m)/2(2i + 1)(i + l − 1)!!

(i − l)!!(l −m)!
(i −m)!
(i +m)!

1il
m. (28)

From the addition theorem for the associated Legendre functions it follows:

|Pmi (S)| 6
√
(i +m)!

(i −m)!
1√

2− δm0
− 16 S 6 1 (29)

while a slightly tightened version of the inequality (87-7) of [3], volume II, p 273, may be
written as

|Qmi (T )| <
2i+1(i +m)!

(2i + 1)!!

(
1

T +
√
T 2 − 1

)i+1

Fm(T ) T > 1 (30)

Fm(T ) = 1

2

(√
T + 1

T − 1

m

+

√
T − 1

T + 1

m)(
T +
√
T 2 − 1

2
√
T 2 − 1

)1
2

(31)

wherein a factor of(2π/(2l+1))1/2 has been replaced by the original factor of 2l+1l!/(2l+1)!!.
These inequalities allow one to see that the absolute values of the terms on the rhs of (27) are
smaller than those of the series

∞∑
i=l

Fm(T )2i+1(i + l − 1)!!
√
(i −m)!(i +m)!√

2− δm0(l −m)!(i − l)!!(2i − 1)!!
1il
m

(
1

T +
√
T 2 − 1

)i+1

.

Employing the quotient criterium it is easily verified that this series has a convergence radius
of one, so that (27) is found to be absolutely convergent forT > 1. On the other hand, it
is clear that (27) loses its sense for any point(T , S) = (1, S) on the line between the focal
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points, sinceQmi (T )→∞ for T → 1. Similarly to equation (27), the relation inverse to it is
obtained as

Qml (T )Pml (U) =
∞∑
i=l

( c
R

)i+1
Pmi (S)b̃

il
m (32)

where

b̃ilm =
(−1)m(i −m)!

(i − l)!!(i + l + 1)!!

(l +m)!

(l −m)!1
il
m. (33)

Employing (29) the series
∞∑
i=l

(l +m)!
√
(i −m)!(i +m)!√

2− δm0(l −m)!(i − l)!!(i + l + 1)!!
1il
m

( c
R

)i+1

is seen to majorize the series formed by the absolute values of the terms in (32). The
convergence radius of this series is found to be one, so that (32) is absolutely convergent
for R > c. ForR 6 c, on the other hand, in general it will not converge, as it can be deduced
from the special case(R, S) = (c, 1), l = m = 0, for which the rhs of equation (32) becomes
the divergent subseries

∑∞
i=01

i0
0 /(i + 1) = 1 + 1

3 + 1
5 + · · · of the harmonic series.

Introducing the irregular solid harmonics (3) and (8) the above transformation formulae
can be stated as:

I slm(R) =
∞∑
i=l
ci−lI pim(R; c)[p : s]ilm (34)

I
p

lm(R; c) =
∞∑
i=l
ci−lI sim(R)[s : p]ilm (35)

which, using [s : p]llm = 1 in (35), shows the validity of equation (11). Figure 2 visualizes
the convergence/divergence behaviour of these expansions for the special casel = m = 0.
The expansion (34) is seen to converge reasonably fast toI s00(R) = 1/R, except for points
close to the axis between the focal points of the prolate spheroidal coordinates. On the other
hand, while (35) converges toIp00(R; c) = (1/c) arcothT outside a sphere with radiusc, it
can even alternate within that sphere. Note thatI slm(R) is the electric potential of the spherical
multipoleQs

lm andIplm(R; c) that of the prolate multipoleQp

lm(c). Loosely speaking, figure 2
demonstrates that it is ‘safer’ to expand the potential of a spherical multipole into prolate
multipole potentials than the other way round, since the convergence domain is larger in the
first case.

3. Transformations of regular solid prolate spheroidal harmonics

3.1. Scaling of the distance between the confocal points

The transformation between regular solid prolate spheroidal harmonics defined in a coordinate
system with confocal points±c1 and those with confocal points±c2 can easily be obtained
by inserting equation (20) forc2 into equation (21) forc1. This yields

R
p

lm(r; c1) =
∑
k

cl−k1 S
lk
m (c2/c1)R

p

km(r; c2) (36)

where

S lkm (x) = 1lk
m

(
δlk + (1− δlk) (−1)(l−k)/2

l − k

√
(l +m)!(l −m)!
(k +m)!(k −m)!

(2k + 1)!!

(2l − 1)!!
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x/c
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z/c

Figure 2. Contour lines of
∑imax
i=0 c

i−l I pim(R; c)[p : s]ilm (a), and
∑imax
i=0 c

i−l I sim(R)[s : p]ilm (b), for
l = m = 0 andimax = 0 (dotted curves), 2 (broken curves), and 4 (solid curves). The isocontour
values are 2/3c (outermost contour), 1/c, and 2/c (innermost contour).

×
(l−k)/2∑
j=0

(−1)j
( l−k

2

j

)( l+k−1
2 + j
l−k
2 − 1

)
x2j

)
(37)

and a simple generalization of the results of appendix B.2 has been used. Note that the
presence of1lk

m in (37) allows one to supress the summation limits in (36). Whenever possible
this simplified notation will also be employed in the following. Some basic properties of the
scale transformation coefficients which ensure consistency of (36) with equations (20), (21)
and (24) are

S lkm (0) = [p : s]lkm (38)

S lkm (1) = δlk (39)

lim
x→∞S

lk
m (x) = [s : p]lkmx

l−k. (40)

Furthermore, with the help of the sum rule (24) it is easy to show that

S lkm (x1 · x2) =
∑
i

S lim(x1)x
i
1S ikm (x2)x

k
2 (41)

which specializes to a sum rule between scaling and ‘rescaling’ coefficients:∑
i

S lim(x)xi−kS ikm (1/x) = δlk. (42)

A set of multipolesQp

km(c2) which were evaluated in a prolate spheroidal coordinate
system with distance 2c2 between the confocal points can now easily be transformed into
corresponding multipoles defined with respect to another prolate spheroidal coordinate system,
as long as the underlying cartesian axis systems are identical. The general transformation
equation

Q
p

lm(c1) =
∑
k

cl−k1 S
lk
m (c2/c1)Q

p

km(c2) (43)

encloses the cases of transformation to or from spherical multipole moments, i.e.,c1 = 0 or
c2 = 0. Please note that when there is ac for whichQp

km(c) = 0 for all k > k0, this will not
be the case for any otherc′.

3.2. Translation

Let us now examine what will happen to the spheroidal multipole moments under a parallel
transportation of the axis system. For spherical multipole moments the corresponding
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transformation law follows from the addition theorem for regular solid spherical harmonics:

Rslm(a + b) =
∑
i1,i2

∑
m1,m2

δi1+i2,lδm1+m2,m

√(
l +m

i1 +m1

)(
l −m
i1−m1

)
Rsi1m1

(a)Rsi2m2
(b) (44)

where a Clebsch–Gordon coefficient has already been evaluated [1,10]. For prolate spheroidal
harmonics expandingRplm(a + b; c) in spherical harmonics, using (44) and re-expanding
Rsi2m2

(b) in prolate spheroidal harmonics yields the ‘mixed’ addition theorem

R
p

lm(a + b; c) =
∑
i1,j2

∑
m1,m2

cl−i1−j2u i1
m1

j2
m2

l

m
Rsi1m1

(a)R
p

j2m2
(b; c) (45)

where the coupling coefficient is found to be

u i1
m1

j2
m2

l

m
= 1̃ i1

m1

j2
m2

l

m

(
δi10δj2l + (1− δi10)

√
(l +m)!(l −m)!

(i1 +m1)!(i1−m1)!(j2 +m2)!(j2 −m2)!

× (2j2 + 1)!!(l + i1− j2 − 2)!!(l + i1 + j2 − 1)!!

(2l − 1)!!(2i1− 2)!!(l − i1− j2)!!(l − i1 + j2 + 1)!!

)
(46)

with

1̃ i1
m1

j2
m2

l

m
=


1 (l + i1 + j2) even m = m1 +m2

l > i1 + j2 > |m| i1 > |m1| j2 > |m2|
0 else.

(47)

The derivation of equation (46) for the mixed coupling coefficients makes use of
(l−i1)∑
i2=j2

′ (−1)(l−i1−i2)/2(l + i1 + i2 − 1)!!

(l − i1− i2)!!(i2 − j2)!!(i2 + j2 + 1)!!

= (−1)(l−i1−j2)/2
(l + i1− j2 − 2)!!

(l − i1− j2)!!

(l−i1−j2)/2∑
k=0

(−1)k

×
( l−i1−j2

2

k

)( l+i1+j2−1
2 + k

l+i1−j2

2 − 1

)
(48)

where the prime at the summmation sign on the lhs indicates thati2 varies in steps of two,
and of equation (B2), the rhs of which has been rewritten in terms of double factorials. From
equation (46) we see

u i1−m1

j2−m2

l

−m = u i1
m1

j2
m2

l

m
. (49)

Substituting alsoRsi1m1
(a) in the mixed addition theorem (45) by its expansion in prolate

spheroidal harmonics one obtains the ‘full’ addition theorem

R
p

lm(a + b; c) =
∑
j1,j2

∑
m1,m2

cl−j1−j2t j1
m1

j2
m2

l

m
R
p

j1m1
(a; c)Rpj2m2

(b; c). (50)

The corresponding full coupling coefficients can be obtained by transforming expression (46)
for the mixed coupling coefficients with [s : p]i1j1

m1 which results in

t j1
m1

j2
m2

l

m
= 1̃ j1

m1

j2
m2

l

m

(
δj10δj2l +

√
(l +m)!(l −m)!

(j1 +m1)!(j1−m1)!(j2 +m2)!(j2 −m2)!

× (2j1 + 1)!!(2j2 + 1)!!

(2l − 1)!!

×
(l−j2)∑
i1=J1

′ (l + i1− j2 − 2)!!(l + i1 + j2 − 1)!!

(l − i1− j2)!!(l − i1 + j2 + 1)!!(2i1− 2)!!(i1− j1)!!(i1 + j1 + 1)!!

)
(51)
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where the sum starts atJ1 = 2 for j1 = 0 and atJ1 = j1 else. An alternative expression in the
form of a double sum can be found directly from equation (44) as

t j1
m1

j2
m2

l

m
= 1̃ j1

m1

j2
m2

l

m

(2j1 + 1)!!(2j2 + 1)!!

(2l − 1)!!

√
(l +m)!(l −m)!

(j1 +m1)!(j1−m1)!(j2 +m2)!(j2 −m2)!

×
i1+i26l∑

i1=j1

′∑
i2=j2

′ (−1)(l−i1−i2)/2(l + i1 + i2 − 1)!!

(l − i1− i2)!!(i1− j1)!!(i1 + j1 + 1)!!(i2 − j2)!!(i2 + j2 + 1)!!

(52)

wherei1 andi2 vary in steps of 2 and their sum has to be smaller or equal tol. Equation (52)
clearly displays the symmetry relations

t j2
m2

j1
m1

l

m
= t j1

m1

j2
m2

l

m
= t j1−m1

j2−m2

l

−m . (53)

With the help of the addition theorems one can now express the translation of a regular
solid prolate spherical harmonic to a new origina as

R
p

lm(r − a; c) =
∑
k,m′

cl−kRpkm′(r; c)T k

m′
l

m
(a/c). (54)

When the scaled shift vectora/c is expressed in terms of spherical coordinates the translation
coefficients introduced in this equation can be calculated using the mixed addition theorem as

T k

m′
l

m
(a/c) = (−1)l−k

∑
i

u i

m−m′
k

m′
l

m
Rsi(m−m′)(a/c) (55)

wherec−iRsim(−a) = (−1)iRsim(a/c) has been used along with the fact that the only non-zero
contributions to the sum overi all have parity(−1)i = (−1)l−k. Expressinga/c in terms of
prolate spheroidal coordinates from equation (50) andc−lRplm(−a; c) = (−1)lRplm(a/c; 1),
one obtains

T k

m′
l

m
(a/c) = (−1)l−k

∑
i

t i

m−m′
k

m′
l

m
R
p

i(m−m′)(a/c; 1). (56)

Applying equation (54) twice yields

T k

m′
l

m
((a + b)/c) =

∑
i,m′′
T k

m′
i

m′′ (a/c)T i

m′′
l

m
(b/c). (57)

SinceT i

m′′
l

m
(−a/c) = (−1)l−iT i

m′′
l

m
(a/c), this specializes to the sum rule∑

i,m′′
(−1)l−iT k

m′
i

m′′ (a/c)T i

m′′
l

m
(a/c) = δlkδmm′ . (58)

Note also that (49) or (53) lead to(T k

m′
l

m
(a/c))∗ = (−1)m−m

′T k

−m′
l

−m (a/c).
By equation (54) a set of shifted multipolesQp

lm(a; c), referred to the origina, is obtained
from the original multipolesQp

lm(0; c) as

Q
p

lm(a; c) =
∑
k,m′

cl−kQp

km′(0; c)T k

m′
l

m
(a/c). (59)

As it is the case for spherical multipole moments as well, the translated prolate spheroidal
multipole moments depend on unshifted moments of lower degree only. Thus, using
t 0

0
l

m

l

m
= u 0

0
l

m

l

m
= 1 in equations (56), (59) the first non-vanishing multipole moment is

seen to be independent on the origin, while the values of all multipole moments of higher
degree depend on the origin. A single shifted multipole of degreel will be described through
an infinite series of multipoles of degree> l in the original coordinate system.
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3.3. Rotation

Spherical harmonics of degreel transform under rotations as

Rslm(r
′) =

l∑
m′=−l

Rslm′(r)Dlm′m(α, β, γ ) (60)

where(α, β, γ ) are Euler angles leading from the original to the rotated axis system.

Dlm′m(α, β, γ ) = e−i(αm′+γm)dlm′m(β) (61)

is a Wigner rotation matrix [10]. Using the explicit form for the reduced rotation matrix
dlm′m(β) along with (20) and (21) one can generalize this to describe rotation of regular solid
prolate spheroidal harmonics

R
p

lm(r
′; c) =

∑
k

∑
m′
cl−kRplm′(r; c)Dklm′m(α, β, γ ). (62)

The rotation coefficients in this formula are given as

D k

m′
l

m
(α, β, γ ) = e−i(αm′+γm)d k

m′
l

m
(β) (63)

and the explicit form of the reduced rotation coefficients reads

d k

m′
l

m
(β) = 1lk

m1
kk
m′

√
(l +m)!(l −m)!
(k +m′)!(k −m′)!

(2k + 1)!!

(2l − 1)!!

l∑
i=I1

′ (−1)(l−i)/2(l + i − 1)!!

(l − i)!!(i − k)!!(i + k + 1)!!

×
T2∑
t=T1

(−1)t
(
i +m′

t

)(
i −m′

t +m−m′
)
(cosβ/2)2i+m

′−m−2t (sinβ/2)2t+m−m
′

(64)

whereI1 = max(k, |m|) for (l −m) even andI1 = max(k, |m| + 1) else, while the sum overt
runs fromT1 = max(0, m′ −m) to T2 = min(i +m′, i−m). From the symmetry relations for
the reduced rotation matricesdim′m(β) and equations (20) and (21) it is seen that the reduced
rotation coefficients fulfil

d k

m′
l

m
(β) = (−1)m

′−md k

−m′
l

−m (β) = (−1)m
′−md k

m′
l

m
(−β)

= (−1)l−m
′
d k

m′
l

−m (π − β) = (−1)l+md k

m′
l

−m (π + β). (65)

Twofold application of (62) shows

D k

m′
l

m
(α, β, γ ) =

∑
i,m′′
D k

m′
i

m′′ (α2, β2, γ2)D i

m′′
l

m
(α1, β1, γ1) (66)

where(α, β, γ ) is the result of first rotating by(α1, β1, γ1) and then by(α2, β2, γ2). This can
be specialized to

d k

m′
l

m
(β1 + β2) =

∑
i,m′′

d k

m′
i

m′′ (β2)d
i

m′′
l

m
(β1). (67)

Furthermore, withD k

m′
l

m
(−γ,−β,−α) = (−1)m

′−m(D k

m′
l

m
(α, β, γ ))∗ andd k

m′
l

m
(0) = δlkδm′m

we see ∑
i,m′′
(−1)m

′−m′′(D k

m′
i

m′′ (γ, β, α))
∗D i

m′′
l

m
(α, β, γ ) = δlkδmm′ . (68)

While the spherical harmonics of degreel form the basis of an irreducible representation of
the three-dimensional rotation groupO+(3), this is not the case for the spheroidal harmonics,
which form a basis of the two-dimensional rotation groupO+(2) ≡ C∞ only, where the axis of
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rotation is that joining the two confocal points. According to the formula describing rotation
of a prolate spheroidal multipole of degreel

Q̃
p

lm(c) =
∑
k

∑
m′
cl−kQp

lm′(c)D
kl k

m′
l

m
(α, β, γ ) (69)

a rotation about any other axis will ‘mix in’ multipoles of degree(l − 2), (l − 4), and so
on. Inversly, a single rotated multipole in general will be described by an infinite series of
multipoles with degree>l in the original coordinate system.

4. Modifications for solid oblate spheroidal harmonics

If oblate spheroidal coordinates(v,w, ϕ) and(V ,W, φ) are used to describe the pointsr and
R (cf appendix A (i)) the the Neumann expansion reads

1

|r −R| = i
∞∑
l=0

2l + 1

c
Pl(iv)Ql(iV )Pl(w)Pl(W) + 2i

∞∑
l=1

l∑
m=1

2l + 1

c
(−1)m

(
(l −m)!
(l +m)!

)2

×Pml (iv)Qml (iV )Pml (w)Pml (W) cosm(ϕ − φ). (70)

It converges absolutely forV > v (cf [3], volume III, p 102 ff). In analogy to definitions (7), (8)
it will be found that the most useful definitions of regular and irregular solid oblate spheroidal
harmonics reads:

Rolm(r; c) = (−ic)l
(l −m)!
(2l − 1)!!

√
(l −m)!
(l +m)!

Pml (iv)Pml (w)eimϕ (71)

I olm(R; c) = (−ic)−l−1(−1)m
(2l + 1)!!

(l +m)!

√
(l −m)!
(l +m)!

Qml (iV )Pml (W)eimφ (72)

which allows one to rewrite (70) in a similar form as in equations (4) or (9). With the help of the
explicit expressions ofPml (iv) andQml (iV ) (cf [11]) it is easily verified that these definitions
guarantee real valued representations of multipole moments and potentials—except for the
phase factors eimϕ and eimφ . Furthermore, they have the same symmetry properties as the prolate
solid spherical harmonics, they also become spherical harmonics forc→ 0 (cf equations (10),
(11)), and they obeyc−lRolm(r; c) = Rolm(r/c; 1) andcl+1I olm(r; c) = I olm(r/c; 1).

It is not difficult to modify the proofs given in appendix B to show(
ir

c

)l
P ml (s) =

l∑
i=|m|

alimPmi (iv)Pmi (w) (73)

Pml (iv)Pml (w) =
l∑

i=|m|
ãlim

(
ir

c

)i
P mi (s). (74)

From that one finds

Rslm(r) =
l∑

i=|m|
(−ic)l−i [s : p]limR

o
im(r; c) =

l∑
i=|m|

cl−i [s : o]limR
o
im(r; c) (75)

Rolm(r; c) =
l∑

i=|m|
(−ic)l−i [p : s]limR

s
im(r) =

l∑
i=|m|

cl−i [o : s]limR
s
im(r) (76)

which demonstrates that the transformation coefficients are real valued:

[s : o]lim = (−1)(l−i)/2[s : p]lim (77)

[o : s]lim = (−1)(l−i)/2[p : s]lim. (78)
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Naturally, they obey sum rules strictly analogous to (24).
Let us assume thatr < R and v < V for the pointsr andR. Following similar

considerations as in section 2.4 we obtain from equation (70) and equations (73), (74)( c
iR

)l+1
Pml (S) =

∞∑
i=l
Qmi (iV )Pmi (W)bilm (79)

Qml (iV )Pml (W) =
∞∑
i=l

( c
iR

)i+1
Pmi (S)b̃

il
m. (80)

From (29) and

|Qmi (iV )| <
2i+1(i +m)!

(2i + 1)!!

(
1

V +
√
V 2 + 1

)i+1
(
V +
√
V 2 + 1

2V

)1
2

V > 0 (81)

which is a slightly tightened version of the inequality (87-5) of [3], volume II, p 272, one sees
that the series of the absolute values of the terms in (79) is majorized by

∞∑
i=l

2i+1(i + l − 1)!!
√
(i −m)!(i +m)!√

2− δm0(l −m)!(i − l)!!(2i − 1)!!
1il
m

(
1

V +
√
V 2 + 1

)i+1
(
V +
√
V 2 + 1

2V

)1
2

showing that (79) is absolutely convergent forV > 0. ForV = 0, on the other hand, the
series (79) in general will not converge absolutely. This is easily verified for the special
casel = m = 0,W = 0, by utilizing |Q0

i (i0)| = (π/2)(i − 1)!!/i!! for i even together
with P 0

i (0)b
i0
0 = (2i − 1)((i − 1)!!/i!!)2, and observing that their product is larger than

(π/2)/(i + 1). Remember that the choice of parameters(V ,W) = (0,W) describes the points
of the disc surrounded by the circle of the confocal points (for whichW = 0), whileV > 0
for the points outside this disc of radiusc. Naturally, expansion (80), the reverse to (79), is
absolutely convergent under the same conditions as already discussed for (32), i.e., forR > c,
and in general not forR 6 c. This clarifies the range of validity of the transformation formulae
between the irregular solid harmonics:

I slm(R) =
∞∑
i=l
(−ic)i−lI oim(R; c)[p : s]ilm =

∞∑
i=l
ci−lI oim(R; c)[o : s]ilm (82)

I olm(R; c) =
∞∑
i=l
(−ic)i−lI sim(R)[s : p]ilm =

∞∑
i=l
ci−lI sim(R)[s : o]ilm. (83)

Figure 3 visualizes the convergence/divergence behaviour of these expansions for the special
casel = m = 0. Expansion (82) is seen to converge reasonably fast toI s00(R) = 1/R, except
for points close to the disc surrounded by the confocal ring, while expansion (83) of the electric
potential of an oblate multipole into spherical multipole potentials is obviously of no use inside
a sphere with radiusc.

Finally, comparing equation (76) with (21) makes clear that the regular solid oblate
spheroidal harmonics formally result from their prolate counterparts when replacingc with
−ic. Therefore, their transformation properties and those of the oblate spheroidal multipoles
under scaling, translation and rotation can easily be derived from the results of section 3 by
replacingc with −ic as well. Note that this does not introduce any imaginary terms into the
resulting formulae but only sign changes in the appropriate places. From the real valuedness
of the coefficientsS lkm (x) for purely imaginary arguments this is seen to also hold true for the
most general case of the scaling transformation from prolate to oblate spheroidal multipole
moments and vice versa.
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(b)
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z/c

Figure 3. Contour lines of
∑imax
i=0 c

i−l I oim(R; c)[o : s]ilm (a), and
∑imax
i=0 c

i−l I sim(R)[s : o]ilm (b), for
l = m = 0 (cf figure 2).

5. Discussion and conclusions

In sections 3 and 4 it has been shown that the regular solid spheroidal harmonics and, in
consequence, spheroidal multipole moments can be handled with nearly the same ease as
their conventional spherical counterparts. A translated spheroidal multipole will depend on
the untranslated multipoles of the same and lower degrees, exactly as it is the case for the
spherical multipoles, even if the calculation of the translation coefficients is a little more
involved. The main complication is that a rotated spheroidal multipole in general will not only
depend on unrotated multipoles of the same degree, but also on those of lower degrees—except
for rotation around the symmetry axis of the spheroid, of course. If the charge distribution under
consideration does possess a rotation axis, only rotations around and translations along this axis
will be of interest. Yet, in those cases where the charge distribution has only an approximate
spheroidal shape the general formulae will help to transform the mutipole moments obtained
in one coordinate system to another, readjusted coordinate system. A similar remark applies
to the scaling of spheroidal multipoles.

The addition theorem for regular spherical harmonics is often used to derive a formula for
the multipole–multipole interactions between two ‘spherical’ charge distributions [1], i.e., two
separate non-overlapping charge distributions enclosed in spheres which do not touch. That
can easily be achieved by inserting (44) forr = r1 − r2 into (4), whereR is interpreted
as the distance vector between the centres of the two spheres,r1 as the distance vector
between a charge located in the first sphere and its centre, andr2 as the distance vector
between a charge located in the second sphere and its centre. In principle, utilizing the mixed
addition theorem (45) this can also be performed for the interaction between a spheroidal
and a spherical charge distribution, and similarly from the full addition theorem (50) for the
interaction between two non-overlapping spheroidal charge distributions. However, in both
cases there is an important difference to the purely spherical case: the degrees of the spherical
harmonics entering the product terms in (44) are restricted toi1 + i2 = l, while in (45) products
with i1 + j2 6 l do occur, and similarly products withj1 + j2 6 l in (50). As a consequence,
an interaction potentialIp∗lm (R; c) will also couple multipoles withi1 + j2 < l (or j1 + j2 < l).
So, even if all multipoles higher than a certain degreeimax or jmax should vanish the series
expansion in general will not terminate afterlmax= imax+jmax, in contrast to what is found for
the conventional spherical multipole expansion. The only exception is the interaction between
spheroidal multipoles and purely monopolar spherical charge distributions, of course.

Nevertheless, the series expansion of the interaction between prolate (or oblate) spheroidal
and spherical mutlipoles will be preferred over the conventional multipole expansion when one
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Figure 4. The energyV of interaction between a point-quadrupole and monopolar line- (a), and
disc-charges (b), respectively, as a function of the expansion lengthlmax for various distancesR
between them. Energies from the spheroidal expansions are connected by solid lines, those from
the spherical expansion by dashed lines, and exact values are represented by dotted lines.

of the charge distributions has a shape more closely resembling a rod (or a disc, respectively)
than a sphere. This is demonstrated by figure 4 which contains a comparison between
spherical and spheroidal multipole expansions for the energy of interaction between a spherical
quadrupole and prolate and oblate spheroidal monopoles, respectively. The potential of a
prolate spheroidal monopole isIp00(R; c) = (1/c) arcothT , which is also the potential of a
uniformly charged line of length 2c (cf [12], p 154 f), showing that this charge distribution
plays the role of the spatially smallest possible multipole in the theory of prolate spheroidal
multipoles, i.e. a ‘line monopole’, in analogy to the role of the point charge as smallest
monopole in the theory of spherical multipoles. The interaction energies shown in the figure
were calculated for three distancesR|• of aQs

20 unit quadrupole from the centre of the line
charge, with the quadrupole in a symmetrical position to both ends of the line. At the largest
distance considered ofR|• = 1.6c the prolate spheroidal multipole expansion is close to
converged atlmax= 6, while in the spherical case one needs to go up tolmax= 12 to achieve a
similar accuracy. The advantages of the prolate spheroidal multipole expansion become even
more evident forR|• = 1.2c, i.e., somewhat outside the smallest sphere containing the line
charge, and in particular forR|• = 0.8c, where the spherical multipole expansion diverges
so badly that not a single interaction energy from it is found within the plot ranges. Similar
remarks apply to the oblate spheroidal case shown in the second half of figure 4. The potential
of an oblate spheroidal monopole isI o00(R; c) = (1/c) arcotV . This is also the potential of an
infinitely thin disc of radiusc with a surface charge which is radially distributed according to
1/
√

1− (ρ/c)2 (cf [12], p 254 f). The interaction energies shown in the figure were calculated
for three distancesR• of aQs

20 unit quadrupole from the centre of this disc monopole, with
the quadrupole located on the rotation axis.

While the above considerations demonstrate that the infinite series expansion of the energy
of interaction between a spheroidal and a point multipole is much more successful than its
purely spherical counterpart, there is a way to calculate that energy without a series expansion.
This way, suggested by Stiles [4, 5], makes use of the fact that point dipoles interact with the
electric field at their location only, point quadrupoles with the field gradient only, and so on.
Thus, knowledge of the derivatives of the spheroidal multipole potentials is all what is needed
to calculate spheroidal–spherical multipole interactions without having to resort to a series
expansion—and this was how the exact interaction energies displayed in figure 4 have been
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Figure 5. The energyV of interaction between two parallel monopolar line- (a), and disc-charges
(b), respectively, as a function of the expansion lengthlmax for various distancesR between them
(cf figure 4).

computed. Nevertheless, the series expansions may turn out to have a certain practical value:
while the derivatives of spherical multipole potentials are simply other spherical multipole
potentials of a higher degree, this is not the case for the spheroidal multipole potentials. The
analytic differentiation of the spheroidal multipole potentials may become so tedious for higher
derivatives that it is more convenient to use the first few members of their expansions in terms of
irregular solid spheroidal harmonics—which leads us back to the series expansion considered
above.

The spheroidal and spherical multipole expansions of the energy of interaction between
two non-overlapping parallel spheroidal charge distributions are compared in figure 5. In the
prolate case, both line monopoles are contained in the same plane and at a rectangular angle
to the line joining their centres, while similarly the two disc monopoles are centred around
a common rotation axis in the oblate case. In the figure we considered only distancesR‖ or
R= between the line or disc monopoles, respectively, which are smaller than the sum 2c of
the radii of the smallest spheres containing them, so that the spherical multipole expansion
does not necessarily converge any more. Yet, it performs quite well at a distance of 1.9c, at
least when cut at relatively low values oflmax. For smaller values ofR‖ or R= its divergence
becomes obvious already forlmax 6 20. The spheroidal multipole expansions, on the other
hand, seem to be useful down to a distance of about 1.6c, though in absence of any formal
proof of convergence one cannot be sure wether for even larger values oflmax they will start to
show a similar divergence pattern as the spherical multipole expansion. The ‘exact’ interaction
energies displayed in the figure were obtained from (one-dimensional) numerical integrations
of the product of one charge distribution with the electric potential of the other. This is easily
done for the case of the two uniform line charges, while it requires some care in the second
case due to the singularity of the surface charge distribution at the edge of the disc.

While in the examples discussed above it was assumed that both charge distributions
had the same orientation and the same length or radius, respectively, the general case of the
interaction between arbitrary spheroidal charge distributions can be considered with the help of
the scaling and rotation transformations. To that end one can first scale the mutipole moments
of the second charge distribution to meet the ellipticity of the first, followed by a rotation of
the resulting multipole moments so as to align the coordinate systems and finally employing
the translation formula as indicated above. Clearly, the result will not depend on the order of
these operations, yet the larger of the two parametersc1 andc2 coming into play should be
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chosen for the calculation of the interaction potentialsI
p/o

lm (R; c) in order to achieve the best
convergence properties. Let us finally remark that in practice the best way to treat the interaction
between two arbitrary spheroidal charge distributions is perhaps another one: it is possible to
cut one of the charge distributions formally into pieces, to calculate the spherical multipole
moments of each of these domains, and finally the potential, field, field gradient etc, of the other
charge distribution at the locations of these ‘distributed multipole moments’. For molecules
there is a number of different schemes which generate, for example, multipole moments and
polarizabilities of individual atoms within the molecule in order calculate interaction energies
from them [1,13,14]. This procedure overcomes the limits of the spherical multipole expansion,
yet, it requires calculation of the interactions between all atoms of one and all atoms of the other
molecule. Using spheroidal multipole expansions one can either completely avoid to partition
one of the molecules into domains or one can use much larger domains, thus drastically scaling
down the computational effort. Work along these lines is in progress.
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Appendix A. Notation

(i) Let (x, y, z) be the cartesian coordinates of a point inR3. Itsspherical coordinates(r, s, ϕ)
as used here are related to the cartesian coordinates by the formulae:

x = r
√

1− s2 cosϕ y = r
√

1− s2 sinϕ z = rs (A1)

where 06 r <∞,−16 s 6 1, and 06 ϕ < 2π . The reverse transformation is given by

r =
√
x2 + y2 + z2 s = z

r
ϕ = arctan

y

x
. (A2)

Note that the usual definition of the spherical coordinates replacess by θ = arccoss.
Theprolate spheroidal coordinates(t, u, ϕ) are related to cartesian coordinates by

x = c
√
(t2 − 1)(1− u2) cosϕ y = c

√
(t2 − 1)(1− u2) sinϕ z = ctu (A3)

where 16 t < ∞,−1 6 u 6 1, 0 6 ϕ < 2π , andc > 0 is half of the distance of the two
focal points located at thez-axis. The reverse transformation is given by

t = 1

2c

(√
x2 + y2 + (z + c)2 +

√
x2 + y2 + (z− c)2

)
u = 1

2c

(√
x2 + y2 + (z + c)2 −

√
x2 + y2 + (z− c)2

)
ϕ = arctan

y

x
.

(A4)

Thus, the distance of a point from the focal pointz = −c is given byr1 = c(t + u) while its
distance from the other focal pointz = +c is r2 = c(t − u). Another definition of the prolate
spheroidal coordinates replacest by α = arccosht andu by β = arccosu.

Theoblate spheroidal coordinates(v,w, ϕ) are related to cartesian coordinates by

x = c
√
(v2 + 1)(1− w2) cosϕ y = c

√
(v2 + 1)(1− w2) sinϕ z = cvw (A5)
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where 06 v < ∞, −1 6 w 6 1, 06 ϕ < 2π , andc > 0 is the radius of the focal circle
around thez-axis. The reverse transformation is given by

v = 1√
2c

(
x2 + y2 + z2 − c2 +

√
(x2 + y2 + z2 − c2)2 + 4c2z2

)1
2

w = z

cv
ϕ = arctan

y

x
.

(A6)

Another definition of the prolate spheroidal coordinates replacesv by α = arcsinhv andw by
β = arccosw. Note that limc→0 ct = r = limc→0 cv and limc→0 u = s = limc→0w.

(ii) Let l ∈ N0, [−1, 1] := {x ∈ R;−1 6 x 6 1}, x ∈ [−1, 1], z ∈ C\[−1, 1], and
µ ∈ C. TheLegendre functions of the first kindmay then be defined employing Rodrigues’
formula as ([2], p 18):

Pl(µ) = 1

(2l)!!

dl

dµl
(
µ2 − 1

)l
(A7)

while theLegendre functions of the second kindmay be defined as ([2], p 63):

Ql(z) = 1

2

∫ +1

−1
dx
Pl(x)

z− x . (A8)

Now letm ∈ {N0; 0 6 m 6 l}. Theassociated Legendre functions of the first kindare
then defined by ([2], p 89 ff):

Pml (x) = (−1)m(1− x2)m/2
dmPl(x)

dxm
(A9)

Pml (z) = (z2 − 1)m/2
dmPl(z)

dzm
(A10)

while theassociated Legendre functions of the second kindare given as ([2], p 89 ff):

Qml (z) = (z2 − 1)m/2
dmQl(z)

dzm
(A11)

where it is to be understood thatP 0
l = P0

l = Pl andQ0
l = Ql . Finally, the definition of

associated Legendre functions may be extended to allm ∈ {Z;−l 6 m 6 l} using ( [2], pp 99
and 109):

P−ml (x) = (−1)m
(l −m)!
(l +m)!

Pml (x) (A12)

P−ml (z) = (l −m)!
(l +m)!

Pml (z) (A13)

Q−ml (z) = (l −m)!
(l +m)!

Qml (z). (A14)

Note that some workers supress the phase factor(−1)m in equation (A9). Explicit expressions
for the associated Legendre functions of first and second kind may be found in [11], p 115 ff.

(iii) Let n ∈ N0 ∪ {−1}. Thedouble factorialis defined as:

n!! = n(n− 2)(n− 4) · · · (2 or 1) (A15)

with the special values(−1)!! = 0!! = 1.
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Appendix B. Proof of some relations

B.1. Proof of relations (13) and (14)

To show (13) and (14) form > 0 first note that

rmPmm (s) = rm(2m− 1)!!(1− s2)m/2

= cm(2m− 1)!!(t2 − 1)m/2(1− u2)m/2 = Om
m(t, u)

and

rm+1Pmm+1(s) = rm+1(2m + 1)!!s(1− s2)m/2

= cm+1(2m + 1)!! t (t2 − 1)m/2u(1− u2)m/2 = Om
m+1(t, u)

whereOm
l (t, u) denotesrlPml (s) expressed in prolate spheroidal coordinates. This leads to

ammm = 1/(2m− 1)!! andam(m+1)(m+1) = 1/(2m + 1)!!, in accordance with (14). The proof for
l > m + 2 then proceeds by complete induction, using the well known recursion relation

Pml (s) =
2l − 1

l −m sP
m
l−1(s)−

l +m− 1

l −m Pml−2(s) (B1)

which, after multiplication withrl and introducing prolate spheroidal coordinates yields

Om
l (t, u) =

2l − 1

l −m ctuO
m
l−1(t, u) +

l +m− 1

l −m c2(1− t2 − u2)Om
l−2(t, u).

Using (B1) forPml (u) and an analogous recursion relation forPml (t) one finds that

tuPmi (t)Pmi (u) =
(
i +m

2i + 1

)2

Pmi−1(t)P
m
i−1(u) +

(
i −m + 1

2i + 1

)2

Pmi+1(t)P
m
i+1(u)

+
(i +m)(i −m + 1)

(2i + 1)2
(Pmi−1(t)P

m
i+1(u) + Pmi+1(t)P

m
i−1(u))

and

(1− t2 − u2)Pmi (t)Pmi (u)

=
(

1− 2
(i +m)(i −m)
(2i + 1)(2i − 1)

− 2
(i +m + 1)(i −m + 1)

(2i + 3)(2i + 1)

)
Pmi (t)Pmi (u)

− (i +m)(i +m− 1)

(2i + 1)(2i − 1)
(Pmi (t)Pmi−2(u) + Pmi−2(t)P

m
i (u))

− (i −m + 1)(i −m + 2)

(2i + 1)(2i + 3)
(Pmi+2(t)P

m
i (u) + Pmi (t)Pmi+2(u)).

It follows that

Om
l (t, u) = cl

l∑
i=m

amliPmi (t)Pmi (u) + cl
l−1∑
i=m+1

αlim(Pmi+1(t)P
m
i−1(u) + Pmi−1(t)P

m
i+1(u)).

The coefficients in the first sum are given by

alim =
2l − 1

l −m
(
(i +m + 1)2

(2i + 3)2
a(l−1)(i+1)
m +

(i −m)2
(2i − 1)2

a(l−1)(i−1)
m

)
+
l +m− 1

l −m
4m2 − 1

(2i + 3)(2i − 1)
a(l−2)i
m
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which upon assuming relation (14) for thea(l−1)k
m anda(l−2)i

m results back in equation (14) for
alim. Furthermore, one finds that the coefficients

αlim =
2l − 1

l −m
(i +m)(i −m + 1)

(2i + 1)2
a(l−1)i
m

− l +m− 1

l −m
(
(i +m + 1)(i +m)

(2i + 3)(2i + 1)
a(l−2)(i+1)
m

+
(i −m)(i −m + 1)

(2i + 1)(2i − 1)
a(l−2)(i−1)
m

)
in the second sum vanish for all admissible values ofi.

Finally, the theorem which has up to now only been proven form > 0 can readily be
extended to allm in the range−l 6 m 6 l by inserting equations (A12) and (A13) into (13),
(14).

B.2. Proof of relation (18)

Equation (18) is trivially fulfilled for(l − k) odd. For(l − k) even one has
l∑
i=k

ãlima
ik
m = (2k + 1)

(l +m)!

(l −m)!
(k −m)!
(k +m)!

l∑
i=k
′ (−1)(l−i)/2(l + i − 1)!!

(l − i)!!(i − k)!!(i + k + 1)!!

where the prime at the summmation sign on the rhs indicates thati varies in steps of two. It is
easy to see that̃allma

ll
m = 1. Fork = (l − 2), (l − 4), . . . the sum on the rhs can be expressed

as a sum over binominal coefficients

(−1)(l−k)/2

l − k
(l−k)/2∑
j=0

(−1)j
( l−k

2

j

)( l+k−1
2 + j
l−k
2 − 1

)
wherei has been replaced by 2j + k. Using the identity

n∑
j=0

(−1)j
(
n

j

)(
a + j

m

)
= (−1)n

(
a

m− n
)

06 m 6 n (B2)

with n = (l − k)/2 (and thusm < n) this sum is seen to vanish (cf [15], p 619, 47/55).
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