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Abstract. Introducing definitions of solid spheroidal harmonics which contain those of solid
spherical harmonics as special cases for vanishing ellipticity it is shown that the formalism of the
multipole expansion of a R-potential can be consistently extended to incorporate prolate and
oblate spheroidal multipole moments. For finite ellipticity one can transform between regular solid
spheroidal and spherical harmonics and multipole moments through simple relations given before
and independently proven here. Corresponding relations between irregular solid spheroidal and
spherical harmonics are presented for the first time, together with an investigation of the convergence
properties of the resulting series expansions. Explicit formulae are derived for the transformations
between spheroidal multipoles calculated in coordinate systems of different ellipticity, origin and
orientation. These fromulae can be utilized to calculate the energy of interaction between two
arbitrarily oriented spheroidal charge or mass distributions of different ellipticity. The performance
of spheroidal multipole expansions is illustrated with some numerical examples.

1. Introduction

One of the most useful series expansions in physics is certainly that of the inverse of a distance
between two points in space into a Taylor series around one of the points, or, more elegantly,
into products of corresponding regular and irregular solid spherical harmonics. For example,
if all of the members of a set of particles interact with a separate single particle via an inverse
distance energy law, as is the case for electrostatic or gravitational interactions, this series
expansion can be used to express the energy of interaction in powers of the inverse distance
between the single particle and an appropriate point within the particle distribution, resulting
in the multipole expansion of the potential of the charge distribution. Similarly, the energy of
interaction between two separate sets of particles can be expanded in powers of the inverse
distance between chosen centres of the two charge distributions. Using the multipole expansion
forthe calculation of potentials or interaction energies one can replace the detailed knowledge of
the individual positions of the particles within the distributions by a set of multipole moments.
This is particularly useful when considering continuous charge or mass distributions. The
multipole moments are computed once and for all, and it is often the case that either only a
finite number of them do not vanish or that higher multipole moments can be safely neglected.
The multipole expansion of an interaction energy will converge to the exact result when
each of the separate charge or mass distributions can be enclosed in a sphere and the respective
spheres do not overlap or touch. This does preclude its application to problems such as
that of computing the electrostatic interaction between, for example, a long rod-like and a
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spherical charge distribution, when the latter is located on a place at the side of the former
which is closer than half of the rod length. Similarly, the conventional multipole expansion in
general will not converge when the spherical charge distribution is placed on top of a disc-like
charge distribution at a distance smaller than the radius of the disc. Problems of this type are
frequently encountered in the theory of intermolecular interactions [1], for example when one
wants to study the interaction of a water molecule with an extended polymer chain or with a
flat polycyclic aromatic system. These situations can be more appropriately described when
using prolate or oblate spheroidal instead of spherical coordinates. It is well known that in
these coordinates one can give a series expansion of the inverse of a distance between two
points in a similar way as in the case of spherical coordinates, replacing spherical with prolate
or oblate spheroidal harmonics [2,3]. Some time ago Stiles and Buchdahl [4—6] derived
formulae which relate regular solid spherical harmonics to their spheroidal counterparts,
showing explicitly how the latter can be obtained as linear combinations of the former and
vice versa. Unfortunately, these results and related work on the ellipsoidal case [7,8] seem to
have gone largely unnoticed—perhaps due to the complications connected with the occurence
of associated Legendre functions of the second kind in the spheroidal series expansion. Yet,
for numerical calculations this plays hardly any role, and the development of a systematic
formalism dealing with spheroidal multipoles appears to be worthwhile, mainly, but not
exclusively, with applications in the theory of intermolecular interactions in mind.

Some basic ingredients of such a theory of spheroidal multipole expansions will be
presented in this paper. First of all, since spherical coordinates can be obtained as a special
case of the spheroidal coordinates for vanishing ellipticity, it is desirable that regular and
irregular solid spherical harmonics can be obtained as special cases of corresponding spheroidal
harmonics as well. Such a consistent definition of regular and irregular solid prolate spheroidal
harmonics is given in section 2, which also contains the formulae for transformation between
the regular harmonics (a new proof of which is given in appendix B) and, for the first time, the
formulae for transformation between the irregular harmonics. The latter have the form of an
infinite series expansion whose convergence properties will be briefly investigated, elucidating
some advantages of an expansion into spheroidal multipole potentials. Animportant feature of
the theory of spherical harmonics is the availability of formulae for their transformations under
translation and rotation of the coordinate system, making it easy to shift or rotate spherical
multipoles. These transformations are of particular value in those cases where the charge
or mass distribution deviates from an idealized spherical shape, so that one may wish to
‘readjust’ a known set of multipoles to a rotated or displaced coordinate system. Furthermore,
they play a crucial role in the derivation of formulae for the interaction between arbitrarily
oriented multipoles [1]. For prolate spheroidal multipole moments there is an additional
transformation to be considered, namely that due to a readjustment of the distance between
the confocal points of the spheroid. The corresponding transformation formulae for scaling,
translation, and rotation of regular solid prolate spheroidal harmonics can easily be derived
from their relation to the spherical harmonics. Explicit formulae which apply directly to prolate
spheroidal multipole moments are given in section 3, along with some basic properties of the
transformation coefficients. The definition of regular and irregular solid oblate spheroidal
harmonics and the modifications of the transformation relations necessary to handle oblate
spheroidal multipole moments are presented in section 4. In the concluding section 5 it is
indicated how these relations can be exploited to determine the energy of interaction between
arbitrarily oriented or scaled spheroidal multipole moments and some numerical comparisons
of the performance of spheroidal and spherical multipole expansions will be shown.
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2. Prolate spheroidal multipole expansion

2.1. Regular and irregular solid spherical harmonics

The Laplace expansion of the inverse distance between two peiatsd R in a three-
dimensional real space

1 x r!
m s 3 #PI(S)PI(S) + 22 Z " (s)P"(S)cosm(p —¢) (1)
=0

(l+m)| Rl+1 I

where(r, s, ¢) and(R, S, ¢) are the spherical coordinates (cf appendix A (i)) of the points

r and R, respectively, is one of the most frequently used series expansions in physics. It
converges absolutely fa¢ > r. Introducing regular and irregular solid spherical harmonics
defined through the Racah spherical harmonigg’s, ¢) as [1,9, 10]

(I —m)!

R, (r) = rlClm(s, Y) = r m P (s )elmw @)
[ —m)! .
I}, (R) = R771C (S, ¢) = R ((l +Z))! P"(S)ém? ®)

respectively, the Laplace expansion can conveniently be rewritten in the form

r— R| = Z Z I (R)RY, (1), “

=0 m=—I

The numerical factors in the definitions (2), (3) are chosen suchihaf, = (—-1)"R;,
and/_,,, = (=1)"1,,. Employing, for simplicity, atomic unitée = 1 = 4r€o) the electric
potential® (R) = fv dzp(r)/|r — R| generated by a charge distribution can now be calculated
from the spherical multipole expansion

00 ]
PR =YD I(R) /v dr R, (r)p(r)

=0 m=—I
= Z Z LY (R)Q;, (5)

=0 m=—I

where the integration has to be carried out over the voMwecupied by the charge distribution
and R must be outside the smallest sphere enclo¥ingquation (5) contains the definition
of the spherical multipole moments; .

2.2. Regular and irregular solid prolate spheroidal harmonics

Using prolate spheroidal coordinatesu, ¢) and(7, U, ¢) to describe the poinisand R (cf
appendix A (i)) one obtains the Neumann expansion

1 x o + 2+1 L (=mtY?
Tl S Pz(t)Qz(T)Pl(M)PI(U)+ZZZ D ((l+m>!>

=1 m=1
xP() Q[ (T)P/" (u) " (U) cosm(p — ). (6)
It converges absolutely faf > 7 (cf [3], volume |, p 90 ff). Introducing the definitions

, =m)! [ —m)!
“@a@—pn\ d+my

Rl (r;c) = Pr(t) P ()€™’ (1)
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@+n" /1 —-m)!
d+m)\ (+m)!

for regular and irregular solid prolate spheroidal harmonics, equation (6) can be recast into the
simple form

I (R €) = 11" QI(T) P} (U)e" ®)

1 o0 1 N
TR Yo IR OR], (). ©)

1=0 m=-1
The definitions (7), (8) imply that ' R” (r; ¢) = R (r/c; 1) andc'* 1} (r; c) = I (r/c; 1).

As for the spherical harmonics, the spheroidal harmonics are of gaity, R (—r; c) =
(=D'R! (r; c) andll (—r; ¢) = (1)1} (r; ¢). The numerical factors in definitions (7), (8)
are chosen such th&_, = = (-1)" R/ andl;_,, = (=1)"1; . Furthermore, as it will be
seen in sections 2.3 and 2.4, they ensure that

lim Rl (r;¢) = R, (1) (10)

m

H P
lim 1,
c—0

(R;¢c) =1}, (R). (11)

Using this the electric potential generated by a charge distribution can now alternatively be
calculated from the prolate spheroidal multipole expansion

o) 1
QR) =) Y IM(R:o) / deR? (r;¢)p(r)
v

=0 m=-I

00 1
=Y > IR 00}, () (12)

=0 m=—I
whereR must be outside the smallest prolate spheroid enclosing the valwoeupied by the
charge distribution. Equation (12) defines the prolate spheroidal multipole mo@gis.
The transformation and limiting formulae for the regular solid prolate spheroidal harmonics
derived in the following sections apply immediately to the corresponding multipole moments
as well.

2.3. Relation to regular solid spherical harmonics

The spherical harmonig’ P"(s) contains products and powers of = ¢?(t?2 — u? — 1),

rs = ctu, andr” (1 — s2)™/2 = ¢(t? — 1)"/2(1 — u?)"/2, Therefore, it is clear that it can
be expanded in products of associated Legendre funcifits) P" (u), with i and j ranging
down froml to |m| or |m| + 1 in steps of two. As it turns out (cf appendix B.1) only terms with
Jj =i occur in the expansion:

ry m l li pm m
(;) P (s) =i=2|n;lam73,. (1) P (u). (13)
An explicit form for the expansion coefficients has first been given by Stiles and Buchdahl [5, 6].
It can be written as
i @i+DHd+m)t (@ —m)! Al
m Q=N+ DN GEm) "
where, for convenience, the range of definition has been extended to arbitrary combinations
of /, i andm using
Al — 1 (I —i)even, >0 >|m|
" 0 else.

(14)

(15)
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Appendix B.1 presents an elementary proof. Considering the inverse relation to equation (13)
it is clear that one can expand

! i
m([)Pl (u) Z Nirlz (2) le(s) (16)

=|m|
The explicit form of the expansion coefficients now reads [5, 6]:
S _ (D2 +i — N (1 +m)! _
" (=G +m)! d—mn "
Equations (16), (17) can be shown by inserting equations (13), (14) into (16) and using the
sum rule

(17)

l

Zdh =5 (18)
derived in append|x B.2. Itis clear then that
Zaffl = Sk (19)

must also hold.

Combining the definitions (2) and (7) with the above relations one obtains the formulae
for the transformation between regular solid spherical harmonics and their prolate spheroidal
counterparts:

]
Ry, (r) =" ¢'[s: pliRl, (ric) (20)
i=|m|
]
Rl (r;c) = Z ps]iRE () (21)
i=|m)|
with
o ( +m)l(l — m)! (2i + D! p
s Pl =bs 2P = i —mr a —oua+ipu o @2
i JaEmY A —m)! (D2 -t
sk =lp sl = VGarmiG—m! a—di@—Dn (23)
and

Z[p sluls < plik = Z[s plalp : slik = du. (24)

Noting that f : p]i = [p:s]! = 1, one obtains (10) immediately from (21). It is easy
to calculate the transformation coefficients numerically by employing the simple forward
recursions

VA+22—m)([(+D2—m?)

(I+2—D(I+i+3 [ Pl (25)

(+i+DJ((@+22—mA ([ +D2—m®)
(+2—)(2A+3)2A+1) Lp = sl (20)

or similar backward recursions far [ p]'i=2 and [ : p]'“~2. Figure 1 shows some of the

Iow-ranktransformation coefficients, which, for laigelecrease inversely proportionaltm
case of theq : p]“ and exponentially in case of the [ s]%.

(s : Pl =
: m

[p . s](l+2)i — _
*90lm

ﬂl
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Figure 1. Some coefficients for transformation from solid prolate spheroidal to spherical harmonics,
[s: p]ﬁﬁ, (a), and the absolute values of the back-transformation coefficiﬁrpts,s]ﬁ:,\ (b), as a
function of!.

2.4. Relation to irregular solid spherical harmonics

Let us assume that< R andr < T for the pointsr andR. Inserting (16) into the Neumann
expansion (6), comparing it with the Laplace expansion (1), and making use of the orthogonality
of cosm(p — ¢) and P/ (s) shows

1+1 =S )
(%) P"(S) =) Q(T)P"(U)b), @7)
i=l
where
il = (=1 E+2m/224 + 1) (i +1 — DN (i — m)! Al 28)

(i — DI — m)! (G+m) ™
From the addition theorem for the associated Legendre functions it follows:

. i+m) 1 B
PRI <\ Gt T 1<5<1 (29)

while a slightly tightened version of the inequality (87-7) of [3], volume II, p 273, may be
written as

" 2743 +m)! 1 o
Q7 (T)] < 2+ DI <T+m) Fn(T) T>1 (30)
1 T+1 T-1\[T+JT2-1 :
Fm(T)=§<\/T—1 +\/T+1 )( 2/T2 —1 ) (31)

wherein a factor of2r /(2 +1))*/? has been replaced by the original factor 6t2 /(2! + 1)!!.
These inequalities allow one to see that the absolute values of the terms on the rhs of (27) are
smaller than those of the series

0 F(T)2* G +1 — NG —m)TG +m)! Al < 1 )"*1
2= 80l —ml— DN -D "\ T+yT2-1)
Employing the quotient criterium it is easily verified that this series has a convergence radius

of one, so that (27) is found to be absolutely convergentffas 1. On the other hand, it
is clear that (27) loses its sense for any pd@ifitS) = (1, S) on the line between the focal
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points, sinceR!"(T') — oo for T — 1. Similarly to equation (27), the relation inverse to it is
obtained as

i mn = N i i1 m il
QN (TP (U) = ;(R) P"(S)b! (32)
where
g DM —mt dxmt (33)

mT GG+ (—m)l ™
Employing (29) the series

i (4 +m) T —m)IG +m)! A <£>[+1
— 2= 8ol —m)V (i — DN G +1+DN "

R

is seen to majorize the series formed by the absolute values of the terms in (32). The
convergence radius of this series is found to be one, so that (32) is absolutely convergent
for R > ¢. ForR < ¢, on the other hand, in general it will not converge, as it can be deduced
from the special casgr, S) = (¢, 1), [ = m = 0, for which the rhs of equation (32) becomes
the divergent subseri€s*g AL/(i +1) = 1+ + 1 + ... of the harmonic series.

Introducing the irregular solid harmonics (3) and (8) the above transformation formulae
can be stated as:

LRy =Y "I (R: o)[p : 5]} (34)
i=l

Ih(R;o) =) ™I, (R)s : ply (35)
i=l

which, using § : p]? = 1 in (35), shows the validity of equation (11). Figure 2 visualizes
the convergence/divergence behaviour of these expansions for the speciakcase= 0.

The expansion (34) is seen to converge reasonably fagt®) = 1/R, except for points

close to the axis between the focal points of the prolate spheroidal coordinates. On the other
hand, while (35) converges t,(R; ¢) = (1/c) arcothT outside a sphere with radius it

can even alternate within that sphere. Note ffjatR) is the electric potential of the spherical
multipole Q}, and1/ (R; ¢) that of the prolate multipol@®!’ (c). Loosely speaking, figure 2
demonstrates that it is ‘safer’ to expand the potential of a spherical multipole into prolate
multipole potentials than the other way round, since the convergence domain is larger in the
first case.

3. Transformations of regular solid prolate spheroidal harmonics

3.1. Scaling of the distance between the confocal points

The transformation between regular solid prolate spheroidal harmonics defined in a coordinate
system with confocal pointsc; and those with confocal pointsc, can easily be obtained
by inserting equation (20) far, into equation (21) for;. This yields

R, (ricr) =) ¢ S (ca/cr) R, (75 c2) (36)
k

where

m

(—1)<l—k>/2/ (A +m)l(l —m)! (2k+ 1!

lk _ Alk _
S (x)—Am<51k+(1 S1k) I _ &k (k +m)!(k —m)! (20 — )N
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Figure 2. Contour lines o™ ¢~ 1” (R; c)[p : 5] (8), andY_ /™ =115 (R)[s : p]iL (b), for

m

| = m = 0 andimax = 0 (dotted curves), 2 (broken curves), and 4 (solid curves). The isocontour
values are 23c (outermost contour),/k, and 2 ¢ (innermost contour).

(I—k)/2 =k I+k—1 +j _
x > (—1)1( 2 )( 2 )xz-’> (37)
=0 J 2 -1

and a simple generalization of the results of appendix B.2 has been used. Note that the
presence ofAX in (37) allows one to supress the summation limits in (36). Whenever possible
this simplified notation will also be employed in the following. Some basic properties of the
scale transformation coefficients which ensure consistency of (36) with equations (20), (21)

and (24) are

SO =[p: sl (38)
S*(1) = 8, (39)
lim S*(x) =[s : p]*x'~*. (40)

Furthermore, with the help of the sum rule (24) it is easy to show that

Sk(x1 - x2) = ) Sh(xp)x|Sik (x2)xh (41)
which specializes to a sum rule between scaling and ‘rescaling’ coefficients:

D ST S A/ x) = u. (42)

A set of multipolesQ?, (c2) which were evaluated in a prolate spheroidal coordinate
system with distancec2 between the confocal points can now easily be transformed into
corresponding multipoles defined with respect to another prolate spheroidal coordinate system,
as long as the underlying cartesian axis systems are identical. The general transformation
equation

0h,(c) =) T Si(ca/c1) QF, (c2) (43)
k
encloses the cases of transformation to or from spherical multipole moments, k€0 or

c2 = 0. Please note that when there is for which O}, (c) = 0 for all k > ko, this will not
be the case for any othet.

3.2. Translation

Let us now examine what will happen to the spheroidal multipole moments under a parallel
transportation of the axis system. For spherical multipole moments the corresponding
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transformation law follows from the addition theorem for regular solid spherical harmonics:

[+m [—m
R+t =3 3 am,-z,,amﬁmz,m\/ (l.l +m1) ( " ) R, (@)K, (b) (44)

— 11—

1,12 My,m2
where a Clebsch—Gordon coefficient has already been evaluated [1,10]. For prolate spheroidal
harmonics expanding; (a + b; ¢) in spherical harmonics, using (44) and re-expanding
(b) in prolate spheroidal harmonics yields the ‘mixed’ addition theorem

12m2

Rh(a+bic)y=Y Y ™ lynn iR (a)RY, (bic) (45)
i1, j2 M1,m2
where the coupling coefficient is found to be
. L+m)!( —m)!
wi = A (808, + (L840, |~ G ot )
R L ' (ix +m)! (s — my)!(j2 + m2)! (j2 — m2)!
R+ DN +ir— jo— 2N +ir + jo — D!
x . — —— (46)
@2 —-DNQRi —2N U —ip— j)" I — i+ jo+ DI
with
1 (I +i1+ jo) even m=mq+mo
Ap izl = [>ir+j2 > |m| i1 > |my J2 = |ma| (47)
0 else.

The derivation of equation (46) for the mixed coupling coefficients makes use of
(l_il)/ (_1)(1—1'1—1'2)/2([ +iy+i, — DI
(I — iy — i (i2 — jo)!(ix+ jo + DU

i2=j2

BN
= (—1)l-i- 2 Fin— jo = 2U (7

(—ii— &

<l—i1—jz> <l+11+12—l +k

2 2

x [+i1— ) (48)
k 12 J2 1

where the prime at the summmation sign on the lhs indicates thairies in steps of two,
and of equation (B2), the rhs of which has been rewritten in terms of double factorials. From
equation (46) we see

R R (49)
Substituting als®; , (a) in the mixed addition theorem (45) by its expansion in prolate
spheroidal harmonics one obtains the ‘full’ addition theorem
Rp(a+bic)=2 " % c""rpp RY, (@i 0)R], (b o). (50)
J1,j2 m1,mz
The corresponding full coupling coefficients can be obtained by transforming expression (46)
for the mixed coupling coefficients with | p];»/* which results in

ti2l _Afl 21§08 + (l+m)l(l_m)'
mymym — Doy my m | 07109 )2l . . :

(—1)*

(1 +m)!(j1 — m)! (jo + m2)!(j2 — m2)!
(21 + DN (2j + D
2 — D
=i (I+ir— jo—2N(I +ip+ jo— DI )
(=i — NI —ir+ o+ DN (20 — 2N (@1 — jo! G + ji + DY
(51)

X

i1=J1
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where the sum starts & = 2 for j; = 0 and at/; = j; else. An alternative expression in the
form of a double sum can be found directly from equation (44) as

A (2j1+1)!!(2j2+1)!!\/ (L +m)! (L —m)!
e e 2 -nh (J1+m)!(j1 — m)!(j2 + m2)! (j2 — m2)!
y Zi (—D) =22 + iy + iy — N
=, =i =i = ) Gt o+ DG — ) 2+ j2 + DN

(52)

wherei; andi; vary in steps of 2 and their sum has to be smaller or equalEgjuation (52)
clearly displays the symmetry relations

tienl —gtni2l i 2 I (53)

mp my m my mp m —mq —mp —m

With the help of the addition theorems one can now express the translation of a regular
solid prolate spherical harmonic to a new origias

Rh(r—aic)=Y ™R (r:)T 4 (a/c). (54)
k,m’

When the scaled shift vectar/c is expressed in terms of spherical coordinates the translation
coefficients introduced in this equation can be calculated using the mixed addition theorem as

T (@/e)= (=D u ', bR, . (a/o) (55)

m

contributions to the sum ovérall have parity(—1)’ = (—1)'~%. Expressingz/c in terms of
prolate spheroidal coordinates from equation (50) ari®” (—a; c) = (—1)'R} (a/c; 1),
one obtains

wherec™ R! (—a) = (—1)' R}, (a/c) has been used along with the fact that the only non-zero

T) i (afe)= (=D ¢ i b IRE, . (a/c; D). (56)

Applying equation (54) twice yields
Ty.,((atb)/e)=) T, .(a/0)T,,, (bfc). (57)

771, m m-m m” m

i,m”

Since7 , ! (—a/c) = (=1)7'T i, | (a/c), this specializes to the sum rule

m'" m m' m

D DT a/o)T ) L a)c) = Sudmm- (58)

Note also that (49) or (53) lead t@ * | (a/c))* = (—l)’”""’Tfm, ! (a/c).
By equation (54) a set of shifted multipol€, (a; c), referred to the origii, is obtained
from the original multipole®? (0; ¢) as

Of (aic) = QL (0: T | (a/o). (59)
k,m’

As it is the case for spherical multipole moments as well, the translated prolate spheroidal
multipole moments depend on unshifted moments of lower degree only. Thus, using
1301 = yo! !l =1 in equations (56), (59) the first non-vanishing multipole moment is
seen to be independent on the origin, while the values of all multipole moments of higher
degree depend on the origin. A single shifted multipole of degrei# be described through

an infinite series of multipoles of degreel in the original coordinate system.
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3.3. Rotation

Spherical harmonics of degré¢&ransform under rotations as

1
R;m (7'/) = Z R;m’(r)Di/t’m (Ol, ﬂ» J/) (60)

where(w, B8, y) are Euler angles leading from the original to the rotated axis system.
Dy (@, B y) = €T, (B) (61)

is a Wigner rotation matrix [10]. Using the explicit form for the reduced rotation matrix
d', (p) along with (20) and (21) one can generalize this to describe rotation of regular solid
prolate spheroidal harmonics

Rh (i)=Y c*R) (ri )DL, (. B. y). (62)
kK m

The rotation coefficients in this formula are given as
DY (e, B, y) =€ md k1 (B) (63)

m' m

and the explicit form of the reduced rotation coefficients reads

dhl(B) = Ai’;Aﬁﬁ\/

A+ml—m)! k+DN <, (D2 +i — N
(k+m)(k —m)! (2 — D! 2 (— DN — kNG +k+ 1

i=I
x i(—l)’ <i * m)( o )(cosﬂ/z)z“’"’mzf(sin p2)2mn
= t t+m—m'

(64)
wherel; = max(k, |m|) for (I —m) even and; = maxk, |m| + 1) else, while the sum over
runs from7; = max(0, m’ —m) to T, = min(i +m’, i —m). From the symmetry relations for

the reduced rotation matrice$,,, (8) and equations (20) and (21) it is seen that the reduced
rotation coefficients fulfil

diLB)y = D" "d L, L (B) = (D)™ "L L (=)

= (DL L= B) = (=D L (w+B). (65)
Twofold application of (62) shows
Dil(a,B,y) =) DL i (a2, B2, y2)D, | (a1, B1, y1) (66)

i,m”

where(x, B, y) is the result of first rotating by, 81, y1) and then by(az, B2, ¥2). This can
be specialized to

diL(Br+B) =Y d} (B, (B). (67)

Furthermore, wittD }, | (—y, =B, —a) = (—l)m/‘m(an, e, B, yn*andd k1 (0) = 8ibmm
we see
D DD (v B @) D (e B y) = Sk (68)
While the spherical harmonics of degiderm the basis of an irreducible representation of
the three-dimensional rotation grod (3), this is not the case for the spheroidal harmonics,
which form a basis of the two-dimensional rotation gra&f(2) = C,, only, where the axis of
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rotation is that joining the two confocal points. According to the formula describing rotation
of a prolate spheroidal multipole of degree

0, (=YY ™0} (D" i (. B. y) (69)
k m

a rotation about any other axis will ‘mix in’ multipoles of degrée— 2), (I — 4), and so
on. Inversly, a single rotated multipole in general will be described by an infinite series of
multipoles with degree=! in the original coordinate system.

4. Modifications for solid oblate spheroidal harmonics

If oblate spheroidal coordinatés, w, ¢) and(V, W, ¢) are used to describe the poimtand
R (cf appendix A (i)) the the Neumann expansion reads

1 2l + 20+1 m (L —m)!
|r—R| |;TP[('”)QI(IV)PI(U))PI(W)+2|ZZ (_) ((l+m)')

x P (iv) Q' (iV)P" (w) P" (W) cosm(p — ¢). (70)

It converges absolutely far > v (cf[3], volumellll, p 102 ff). In analogy to definitions (7), (8)
it will be found that the most useful definitions of regular and irregular solid oblate spheroidal
harmonics reads:

Ca=mt [a=mr .
in(ri©) = (1) ((21 —HE!! y ((1 +Z))! P B ()™ (71)

o . g o @EDN [ —m)!
lin (B €) = (o) 2D e Tt
which allows one to rewrite (70) in a similar form as in equations (4) or (9). With the help of the
explicit expressions oP;" (iv) and Q)" (iV) (cf [11]) it is easily verified that these definitions
guarantee real valued representations of multipole moments and potentials—except for the
phase factors” and & . Furthermore, they have the same symmetry properties as the prolate
solid spherical harmonics, they also become spherical harmonics$06 (cf equations (10),

(112)), and they Obey_lRl"m(r; ¢) =R}, (r/c; D) andc’+1l" (r;c)=1),(r/c; D).
It is not difficult to modify the proofs given in appendlx B to show

QI (iV)P" (W)™ (72)

( ) Pl (s) = Z al P (iv) P" (w) (73)

i=|m)|

! H i
Priv) P (w) = Yy <'§) P (s). (74)

i=|m|

From that one finds
1 1

Ry, (1) =Y (=ie) s : pliRG,(ric) = Y s 1 olh R, (ric)  (75)

i=|m)| i=|m|
1 . l )
Ry, (ric) = (=) [p:s]iR}, () = > 7o s RS, () (76)
i=|m| i=|m|
which demonstrates that the transformation coefficients are real valued:
[s s ol = (=15 : p]ls (77)
[o: 5] = (=)= p : 5]1. (78)
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Naturally, they obey sum rules strictly analogous to (24).
Let us assume that < R andv < V for the pointsr and R. Following similar
considerations as in section 2.4 we obtain from equation (70) and equations (73), (74)

() pr =Y aravpr v (79)
i=l
orivyrr oy =Y () BB (80)

i=l
From (29) and

1
271 +m)! 1 TV +VVIH1) Voo
2+ \yv+Jv2s1 2v ~

which is a slightly tightened version of the inequality (87-5) of [3], volume Il, p 272, one sees
that the series of the absolute values of the terms in (79) is majorized by

X 2%+ — DN/ GT = m)I G +m)! A,.,( 1 )"*1 V+/V2+1 :
= 2= 50 —m) i — DN Q2i — DI "\ Vv +/VZ¥1 2V

showing that (79) is absolutely convergent for> 0. ForV = 0, on the other hand, the
series (79) in general will not converge absolutely. This is easily verified for the special
casel = m = 0, W = 0, by utilizing |Q%(i0)| = (x/2)(i — 1)!!/i!! for i even together
with P2(0)p? = (2i — 1)((i — 1)!1/i!")?, and observing that their product is larger than
(r/2)/(i +1). Remember that the choice of parametéfsW) = (0, W) describes the points

of the disc surrounded by the circle of the confocal points (for whitk= 0), whileV > 0

for the points outside this disc of radius Naturally, expansion (80), the reverse to (79), is
absolutely convergent under the same conditions as already discussed for (32),R e, for

and in general notfoR < c. This clarifies the range of validity of the transformation formulae
between the irregular solid harmonics:

Q7 (V)] < (81)

I, (R) = Y (=ie) I (R o)lp sl = Y ¢TI (R oo sl (82)
i—1 =l

o0 oo
Ip(Ric) =Y (i) I8, (R)[s : plis = > I, (R)[s - o]l (83)

i=l i=l
Figure 3 visualizes the convergence/divergence behaviour of these expansions for the special
casd = m = 0. Expansion (82) is seen to converge reasonably fagt(®) = 1/R, except
for points close to the disc surrounded by the confocal ring, while expansion (83) of the electric
potential of an oblate multipole into spherical multipole potentials is obviously of no use inside
a sphere with radius.

Finally, comparing equation (76) with (21) makes clear that the regular solid oblate

spheroidal harmonics formally result from their prolate counterparts when replaaifitty
—ic. Therefore, their transformation properties and those of the oblate spheroidal multipoles
under scaling, translation and rotation can easily be derived from the results of section 3 by
replacingc with —ic as well. Note that this does not introduce any imaginary terms into the
resulting formulae but only sign changes in the appropriate places. From the real valuedness
of the coefficientsS (x) for purely imaginary arguments this is seen to also hold true for the
most general case of the scaling transformation from prolate to oblate spheroidal multipole
moments and vice versa.
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x/c x/c

Figure 3. Contour lines o™ ¢~ 1 (R; ¢)[o : 5] (a), and Y™ ¢/~ ¥ (R)[s : o]} (b), for
| = m = 0 (cf figure 2).

5. Discussion and conclusions

In sections 3 and 4 it has been shown that the regular solid spheroidal harmonics and, in
consequence, spheroidal multipole moments can be handled with nearly the same ease as
their conventional spherical counterparts. A translated spheroidal multipole will depend on
the untranslated multipoles of the same and lower degrees, exactly as it is the case for the
spherical multipoles, even if the calculation of the translation coefficients is a little more
involved. The main complication is that a rotated spheroidal multipole in general will not only
depend on unrotated multipoles of the same degree, but also on those of lower degrees—except
for rotation around the symmetry axis of the spheroid, of course. Ifthe charge distribution under
consideration does possess a rotation axis, only rotations around and translations along this axis
will be of interest. Yet, in those cases where the charge distribution has only an approximate
spheroidal shape the general formulae will help to transform the mutipole moments obtained
in one coordinate system to another, readjusted coordinate system. A similar remark applies
to the scaling of spheroidal multipoles.

The addition theorem for regular spherical harmonics is often used to derive a formula for
the multipole—multipole interactions between two ‘spherical’ charge distributions [1], i.e., two
separate non-overlapping charge distributions enclosed in spheres which do not touch. That
can easily be achieved by inserting (44) for= r1 — r; into (4), whereR is interpreted
as the distance vector between the centres of the two spheres the distance vector
between a charge located in the first sphere and its centrer;and the distance vector
between a charge located in the second sphere and its centre. In principle, utilizing the mixed
addition theorem (45) this can also be performed for the interaction between a spheroidal
and a spherical charge distribution, and similarly from the full addition theorem (50) for the
interaction between two non-overlapping spheroidal charge distributions. However, in both
cases there is an important difference to the purely spherical case: the degrees of the spherical
harmonics entering the product terms in (44) are restricteditty = /, while in (45) products
with i3 + jo < 1 do occur, and similarly products with + j, < 7 in (50). As a consequence,
an interaction potential’”(R; ¢) will also couple multipoles witliy + jo < I (or j1 + j» < [).

So, even if all multipoles higher than a certain degigg or jmax Should vanish the series
expansion in general will not terminate aftghx = imax* jmax iN contrast to what is found for

the conventional spherical multipole expansion. The only exception is the interaction between
spheroidal multipoles and purely monopolar spherical charge distributions, of course.

Nevertheless, the series expansion of the interaction between prolate (or oblate) spheroidal
and spherical mutlipoles will be preferred over the conventional multipole expansion when one
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Figure 4. The energyV of interaction between a point-quadrupole and monopolar lime-ahd
disc-chargesh), respectively, as a function of the expansion lengikx for various distance®
between them. Energies from the spheroidal expansions are connected by solid lines, those from
the spherical expansion by dashed lines, and exact values are represented by dotted lines.

of the charge distributions has a shape more closely resembling a rod (or a disc, respectively)
than a sphere. This is demonstrated by figure 4 which contains a comparison between
spherical and spheroidal multipole expansions for the energy of interaction between a spherical
quadrupole and prolate and oblate spheroidal monopoles, respectively. The potential of a
prolate spheroidal monopole i§,(R; ¢) = (1/c) arcothT, which is also the potential of a
uniformly charged line of length2(cf [12], p 154 f), showing that this charge distribution
plays the role of the spatially smallest possible multipole in the theory of prolate spheroidal
multipoles, i.e. a ‘line monopole’, in analogy to the role of the point charge as smallest
monopole in the theory of spherical multipoles. The interaction energies shown in the figure
were calculated for three distancRg of a Q% unit quadrupole from the centre of the line
charge, with the quadrupole in a symmetrical position to both ends of the line. At the largest
distance considered at, = 1.6¢ the prolate spheroidal multipole expansion is close to
converged alnhax = 6, while in the spherical case one needs to go Upde= 12 to achieve a
similar accuracy. The advantages of the prolate spheroidal multipole expansion become even
more evident forR,, = 1.2¢, i.e., somewhat outside the smallest sphere containing the line
charge, and in particular fak,, = 0.8¢c, where the spherical multipole expansion diverges

so badly that not a single interaction energy from it is found within the plot ranges. Similar
remarks apply to the oblate spheroidal case shown in the second half of figure 4. The potential
of an oblate spheroidal monopolelf$(R; c) = (1/c) arcotV. This is also the potential of an
infinitely thin disc of radius: with a surface charge which is radially distributed according to
1/v/1— (p/c)? (cf[12], p 254 f). The interaction energies shown in the figure were calculated
for three distance®, of a Q% unit quadrupole from the centre of this disc monopole, with

the quadrupole located on the rotation axis.

While the above considerations demonstrate that the infinite series expansion of the energy
of interaction between a spheroidal and a point multipole is much more successful than its
purely spherical counterpart, there is a way to calculate that energy without a series expansion.
This way, suggested by Stiles [4, 5], makes use of the fact that point dipoles interact with the
electric field at their location only, point quadrupoles with the field gradient only, and so on.
Thus, knowledge of the derivatives of the spheroidal multipole potentials is all what is needed
to calculate spheroidal-spherical multipole interactions without having to resort to a series
expansion—and this was how the exact interaction energies displayed in figure 4 have been
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Figure 5. The energy of interaction between two parallel monopolar lina}, @nd disc-charges
(b), respectively, as a function of the expansion lerigg for various distance® between them
(cf figure 4).

computed. Nevertheless, the series expansions may turn out to have a certain practical value:
while the derivatives of spherical multipole potentials are simply other spherical multipole
potentials of a higher degree, this is not the case for the spheroidal multipole potentials. The
analytic differentiation of the spheroidal multipole potentials may become so tedious for higher
derivatives that it is more convenient to use the first few members of their expansions in terms of
irregular solid spheroidal harmonics—which leads us back to the series expansion considered
above.

The spheroidal and spherical multipole expansions of the energy of interaction between
two non-overlapping parallel spheroidal charge distributions are compared in figure 5. In the
prolate case, both line monopoles are contained in the same plane and at a rectangular angle
to the line joining their centres, while similarly the two disc monopoles are centred around
a common rotation axis in the oblate case. In the figure we considered only disfnoes
R_ between the line or disc monopoles, respectively, which are smaller than thecspim 2
the radii of the smallest spheres containing them, so that the spherical multipole expansion
does not necessarily converge any more. Yet, it performs quite well at a distan@e,cditl
least when cut at relatively low values lafax. For smaller values oR or R_ its divergence
becomes obvious already fo§ax < 20. The spheroidal multipole expansions, on the other
hand, seem to be useful down to a distance of abdidt, though in absence of any formal
proof of convergence one cannot be sure wether for even larger valiygs ey will start to
show a similar divergence pattern as the spherical multipole expansion. The ‘exact’ interaction
energies displayed in the figure were obtained from (one-dimensional) numerical integrations
of the product of one charge distribution with the electric potential of the other. This is easily
done for the case of the two uniform line charges, while it requires some care in the second
case due to the singularity of the surface charge distribution at the edge of the disc.

While in the examples discussed above it was assumed that both charge distributions
had the same orientation and the same length or radius, respectively, the general case of the
interaction between arbitrary spheroidal charge distributions can be considered with the help of
the scaling and rotation transformations. To that end one can first scale the mutipole moments
of the second charge distribution to meet the ellipticity of the first, followed by a rotation of
the resulting multipole moments so as to align the coordinate systems and finally employing
the translation formula as indicated above. Clearly, the result will not depend on the order of
these operations, yet the larger of the two parametesdc, coming into play should be
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chosen for the calculation of the interaction potentiﬁ,@ (R; ¢) in order to achieve the best
convergence properties. Letusfinally remark thatin practice the bestway to treatthe interaction
between two arbitrary spheroidal charge distributions is perhaps another one: it is possible to
cut one of the charge distributions formally into pieces, to calculate the spherical multipole
moments of each of these domains, and finally the potential, field, field gradient etc, of the other
charge distribution at the locations of these ‘distributed multipole moments’. For molecules
there is a number of different schemes which generate, for example, multipole moments and
polarizabilities of individual atoms within the molecule in order calculate interaction energies
fromthem[1,13,14]. This procedure overcomes the limits of the spherical multipole expansion,
yet, it requires calculation of the interactions between all atoms of one and all atoms of the other
molecule. Using spheroidal multipole expansions one can either completely avoid to partition
one of the molecules into domains or one can use much larger domains, thus drastically scaling
down the computational effort. Work along these lines is in progress.
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Appendix A. Notation

(i) Let (x, v, z) be the cartesian coordinates of a poinRih Its spherical coordinateg, s, ¢)
as used here are related to the cartesian coordinates by the formulae:

x =rv1—s2cosp y =rv1—sZsing 7=rs (A1)

where 0< r < 00, —1 < s < 1,and 0< ¢ < 27. The reverse transformation is given by
— [i21v21.2 _z _ Y
r=+x4+y*+z s = - ¢ = arctan—. (A2)
r X

Note that the usual definition of the spherical coordinates repkabg® = arccos.
Theprolate spheroidal coordinate@, u, ¢) are related to cartesian coordinates by

x =cy(#?—1)(1— u?)cosp y =cv (2 — (1 —u?sing 7 =ctu (A3)

where 1<t < 00, -1 < u < 1,0 < ¢ < 2, andc > 0 is half of the distance of the two
focal points located at theaxis. The reverse transformation is given by

t=z—lc(\/x2+y2+(z+6)2+\/x2+y2+(z—C)2>
u=2—16(\/x2+y2+(z+6)2—\/x2+y2+(1—6)2) (A4)

0= arctan’.
X

Thus, the distance of a point from the focal paint —c is given byr; = ¢(¢ + u) while its
distance from the other focal point= +c isr, = ¢(r — u). Another definition of the prolate
spheroidal coordinates replaagsy o = arccoshr andu by g = arccosu.

Theoblate spheroidal coordinate®, w, ¢) are related to cartesian coordinates by

x =cy/ (@2 + 11— w?) cosy y =cy @2+ 11— w?) sing 7 =cow (A5)



1392 G Jansen

where 0< v < o0, -1 < w £ 1,0< ¢ < 27, andc > 0 is the radius of the focal circle
around thez-axis. The reverse transformation is given by

1
v = 1 (x2+y2+12—62+\/(x2+y2+22—62)2+4C2Z2)2

= ¢
w=— ¢ = arctanX.

cv X

Another definition of the prolate spheroidal coordinates repladgsx = arcsintv andw by

B = arccosw. Note thatlim_oct =r =lim._gcvandlim_ou = s =lim._qw.
(iyLetl € Ng, [-L, 1] ={x e R;-1<x < 1}, x € [-1,1],z € C\[-1,1], and

n € C. TheLegendre functions of the first kimday then be defined employing Rodrigues’

formula as ([2], p 18):

1 d

/
g WY (A7)

Pi(n) =

while theLegendre functions of the second kimay be defined as ([2], p 63):

+1
Qz(Z)=%f dez(x). (A8)

1 i—X

Now letm € {Np; 0 < m < [l}. Theassociated Legendre functions of the first kamd
then defined by ([2], p 89 ff):

xz)m/z d” P (x)

Pr(x)=(D"A - o (A9)
X
dm p,
PP = (2 — L HE (A10)
dz™
while theassociated Legendre functions of the second kiredgiven as ([2], p 89 ff):
Q) = (2 1)'"/2% (ALD)

where it is to be understood th&® = P? = P, andQ? = Q,. Finally, the definition of
associated Legendre functions may be extended to al{Z; — < m < 1} using ([2], pp 99
and 109):

(I —m)!

O TR (A12)
—m (I —m)!
P(=) = 0+ ),7’1() (A13)
—m (l )
UMD = G 4@ (A14)

Note that some workers supress the phase faetby” in equation (A9). Explicit expressions
for the associated Legendre functions of first and second kind may be found in [11], p 115 ff.
(i) Let n € No U {—1}. Thedouble factorialis defined as:

Ml =nm—2)(n—4)---(2ord (A15)

with the special values-1)!! = 0!l = 1.



Spheroidal multipole moments 1393
Appendix B. Proof of some relations

B.1. Proof of relations (13) and (14)
To show (13) and (14) fom > O first note that

PP (s) = r™(2m — DI (1 — s2)"/?
= cm(2m — 1)” ([2 _ 1)’”/2(1 _ u2)m/2 — 0’,::([’ u)

and

PP (s) = P 2m + D s (1 — sH)™?
=" 2m + DN (% — D™ Pu(d — u?)™? = 0™, (t, u)

m+

where 0" (¢, u) denoteSf’P,’"(s) expressed in prolate spheroidal coordinates. This leads to
Ay = 1/(2m — D andag, 1,1 = 1/(2m + D!, in accordance with (14). The proof for
[ > m + 2 then proceeds by complete induction, using the well known recursion relation

21 -1 [+m

-1
l —m SPIT]_(S) — l——mPIsz(S) (Bl)

which, after multiplication with- and introducing prolate spheroidal coordinates yields

P"(s) =

20 — l+m—1
Of' (. u) = T—ctuO}y(t.u) + lm—cz(l — 12— u?) 0" (1, u).
- —m
Using (B1) for P" (1) and an analogous recursion relation ®jt(z) one finds that
w0 P = (LY P e+ (L2 oy e
uP" ()P (u) = Tl @) P () R (O P (u)
@i+m@i-m+1) m - m
+ 2i + 12 (PLy(0) Py (u) + Pig (1) P24 ()

and

(L= 12 = u’)PI" (1) P" (w)
. < B (i+m)(i —m) _2(i+m+1)(i—m+1)

(2i +1)(2i — 1) (2i +3)(2i +1)
LA m =D oy pr ) + B0 P )
@i+Dh@i-1 e
(i—m+DGi—m+2)

T @2i+D)(2i+3

) P (1) P (u)

"o () P () + P (t) Pliy(u)).

It follows that

! -1
O/ (t,u)y =c' Y " ali Pl ()P ) + ' Y b (Pliy () Py (w) + PPy (1) Py (w)).

i= i=m+1
The coefficients in the first sum are given by
di = A—-1(G+m+ 1)2a(171)(i+1) U m)? 2061
mT  —m \ (2i+32 ™ 2i =12 ™
2
+l+m—1 4m- -1 (—2)i
I—m i+3)2i-1) ™
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which upon assuming relation (14) for thg=2* anda~?" results back in equation (14) for
all. Furthermore, one finds that the coefficients
i _ 20—-1@G(+m)(i—m+ 1)(1(,71)1.
"o l—m (2i +1)2 "
[+m—-1/((+m+1)(i+m) (1—-2)(+D)
[—m 2i+3@2i+1) "
LA=mG—m+D) g

@i+h@2-1 "

in the second sum vanish for all admissible values of
Finally, the theorem which has up to now only been proverwfol: 0 can readily be

extended to alk: in the range-I < m < [ by inserting equations (A12) and (A13) into (13),
(14).

o

B.2. Proof of relation (18)
Equation (18) is trivially fulfilled for(l — k) odd. For(l — k) even one has

d (+m) (k —m)! 2’: (=102 +j — D!

Y analy = (2k+1) — :
L (A —m)! (k+m)! (=G — NG +k+ Dl

where the prime at the summmation sign on the rhs indicates tiaaies in steps of two. Itis
easy to see that!a!! = 1. Fork = (I — 2), (I — 4), ... the sum on the rhs can be expressed

m-m

as a sum over binominal coefficients

_q)-ky/2 (H)/2 Cl=kN gkl
oy (—1)-’< 2 )( 1 ’)
I—k VAN |

j=0 2

i=k

wherei has been replaced by & k. Using the identity

i(—l)f (;’) (“;j ) = (-1" (m ‘ n) oO<m<n (B2)
j=0

with n = (I — k)/2 (and thusn < n) this sum is seen to vanish (cf [15], p 619, 47/55).
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